2021 |
|||
Journal Articles |
|||
![]() | Paul Sondo, Biebo Bihoun, Bérenger Kabore, Marc Christian Tahita, Karim Derra, Toussaint Rouamba, Seydou Nakanabo Diallo, Adama Kazienga, Hamidou Ilboudo, Innocent Valea, Zekiba Tarnagda, Hermann Sorgho, Thierry Lefevre, Halidou Tinto Polymorphisms in Plasmodium falciparum parasites and mutations in the resistance genes Pfcrt and Pfmdr1 in Nanoro area, Burkina Faso. Journal Article In: Pan Afr. Med. J., vol. 39, pp. 118, 2021, ISSN: 1937-8688, (Copyright: Paul Sondo et al. PMID: 34512854 PMCID: PMC8396377). Abstract | BibTeX | Tags: Antimalarials/pharmacology, Burkina Faso, Drug Resistance, Falciparum/drug therapy/parasitology, GeneticRestriction Fragment Length, Genotype, Humans, Malaria, Membrane Transport Proteins/genetics, msp1, msp2, Multidrug Resistance-Associated Proteins/genetics, Mutation, Pfcrt, Pfmdr1, Plasmodium falciparum, Plasmodium falciparum/drug effects/genetics/isolation & purification, Polymerase Chain Reaction, Polymorphism, Protozoan Proteins/genetics | Links: @article{Sondo2021-qe, Introduction: from a genetic point of view P. falciparumis extremely polymorphic. There is a variety of parasite strains infesting individuals living in malaria endemic areas. The purpose of this study is to investigate the relationship between polymorphisms in Plasmodium falciparum parasites and Pfcrt and Pfmdr1 gene mutations in Nanoro area, Burkina Faso. Methods: blood samples from plasmodium carriers residing in the Nanoro Health District were genotyped using nested PCR. Parasite gene mutations associated with resistance to antimalarial drugs were detected by PCR-RFLP. Results: samples of 672 patients were successfully genotyped. No msp1and msp2allelic families exhibited an increase in developing mutations in resistance genes. However, mutant strains of these genes were present at greater levels in monoclonal infections than in multi-clonal infections. Conclusion: this study provides an overview of the relationship between polymorphisms in Plasmodium falciparum parasites and mutations in resistance genes. These data will undoubtedly contribute to improving knowledge of the parasite´s biology and its mechanisms of resistance to antimalarial drugs. | ||
![]() | Adama Gansané, Leah F Moriarty, Didier Ménard, Isidore Yerbanga, Esperance Ouedraogo, Paul Sondo, Rene Kinda, Casimir Tarama, Edwige Soulama, Madou Tapsoba, David Kangoye, Cheick Said Compaore, Ousmane Badolo, Blami Dao, Samuel Tchwenko, Halidou Tinto, Innocent Valea Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017-2018 Journal Article In: Malar. J., vol. 20, no. 1, pp. 48, 2021, ISSN: 1475-2875. Abstract | BibTeX | Tags: Antimalarial, Antimalarials/pharmacology, Artemether, Artemether-lumefantrine, Artemisinins/pharmacology, Burkina Faso, Child, Dihydroartemisinin-piperaquine, Drug Resistance, Efficacy, Falciparum/drug therapy, Female, Lumefantrine Drug Combination/pharmacology, Malaria, Male, Plasmodium falciparum, Preschool, Quinolines/pharmacology | Links: @article{Gansane2021-yh, BACKGROUND: The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy. METHODS: This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed. RESULTS: Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64-83%) in Nanoro, 76% (66-83%) in Gourcy, and 92% (84-96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75-89%) in Gourcy, 89% (81-94%) in Nanoro, and 97% (92-99%) in Niangoloko. No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation. CONCLUSION: The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso. Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311. Date of registration: 8/3/2017 https://pactr.samrc.ac.za/Search.aspx. |
Input your search keywords and press Enter.