2021 |
|||
Journal Articles |
|||
![]() | Paul Sondo, Biebo Bihoun, Bérenger Kabore, Marc Christian Tahita, Karim Derra, Toussaint Rouamba, Seydou Nakanabo Diallo, Adama Kazienga, Hamidou Ilboudo, Innocent Valea, Zekiba Tarnagda, Hermann Sorgho, Thierry Lefevre, Halidou Tinto Polymorphisms in Plasmodium falciparum parasites and mutations in the resistance genes Pfcrt and Pfmdr1 in Nanoro area, Burkina Faso. Journal Article In: Pan Afr. Med. J., vol. 39, pp. 118, 2021, ISSN: 1937-8688, (Copyright: Paul Sondo et al. PMID: 34512854 PMCID: PMC8396377). Abstract | BibTeX | Tags: Antimalarials/pharmacology, Burkina Faso, Drug Resistance, Falciparum/drug therapy/parasitology, GeneticRestriction Fragment Length, Genotype, Humans, Malaria, Membrane Transport Proteins/genetics, msp1, msp2, Multidrug Resistance-Associated Proteins/genetics, Mutation, Pfcrt, Pfmdr1, Plasmodium falciparum, Plasmodium falciparum/drug effects/genetics/isolation & purification, Polymerase Chain Reaction, Polymorphism, Protozoan Proteins/genetics | Links: @article{Sondo2021-qe, Introduction: from a genetic point of view P. falciparumis extremely polymorphic. There is a variety of parasite strains infesting individuals living in malaria endemic areas. The purpose of this study is to investigate the relationship between polymorphisms in Plasmodium falciparum parasites and Pfcrt and Pfmdr1 gene mutations in Nanoro area, Burkina Faso. Methods: blood samples from plasmodium carriers residing in the Nanoro Health District were genotyped using nested PCR. Parasite gene mutations associated with resistance to antimalarial drugs were detected by PCR-RFLP. Results: samples of 672 patients were successfully genotyped. No msp1and msp2allelic families exhibited an increase in developing mutations in resistance genes. However, mutant strains of these genes were present at greater levels in monoclonal infections than in multi-clonal infections. Conclusion: this study provides an overview of the relationship between polymorphisms in Plasmodium falciparum parasites and mutations in resistance genes. These data will undoubtedly contribute to improving knowledge of the parasite´s biology and its mechanisms of resistance to antimalarial drugs. | ||
![]() | Paul Sondo, Biebo Bihoun, Marc Christian Tahita, Karim Derra, Toussaint Rouamba, Seydou Nakanabo Diallo, Adama Kazienga, Hamidou Ilboudo, Innocent Valea, Zekiba Tarnagda, Hermann Sorgho, Thierry Lef`evre, Halidou Tinto Plasmodium falciparum gametocyte carriage in symptomatic patients shows significant association with genetically diverse infections, anaemia, and asexual stage density Journal Article In: Malar. J., vol. 20, no. 1, pp. 31, 2021, ISSN: 1475-2875, (PMID: 33413393 PMCID: PMC7791700). Abstract | BibTeX | Tags: Anemia/epidemiology/parasitology, Burkina Faso/epidemiology, Falciparum/epidemiology/parasitology, Gametocyte, Humans, Malaria, msp1, msp2, Multiplicity of infection, Plasmodium falciparum, Plasmodium falciparum/physiology | Links: @article{Sondo2021-at, BACKGROUND: Multi-genotype malaria infections are frequent in endemic area, and people commonly harbour several genetically distinct Plasmodium falciparum variants. The influence of genetic multiplicity and whether some specific genetic variants are more or less likely to invest into gametocyte production is not clearly understood. This study explored host and parasite-related risk factors for gametocyte carriage, and the extent to which some specific P. falciparum genetic variants are associated with gametocyte carriage. METHODS: Gametocytes and asexual forms were detected by light microscopy on thick smears collected between 2010 and 2012 in Nanoro, Burkina Faso. Merozoite surface protein 1 and 2 were genotyped by nested PCR on clinical samples. Associations between gametocyte carriage and factors, including multiplicity of infection, parasite density, patient age, gender, haemoglobin (Hb) level, and body temperature were assessed. The relationship between the presence of a particular msp1 and msp2 genetic variants and gametocyte carriage was also explored. RESULTS: Of the 724 samples positive to P. falciparum and successfully genotyped, gametocytes were found in 48 samples (6.63%). There was no effect of patient gender, age and body temperature on gametocyte carriage. However, the probability of gametocyte carriage significantly increased with increasing values of multiplicity of infection (MOI). Furthermore, there was a negative association between parasite density and gametocyte carriage. MOI decreased with parasite density in gametocyte-negative patients, but increased in gametocyte carriers. The probability of gametocyte carriage decreased with Hb level. Finally, the genetic composition of the infection influenced gametocyte carriage. In particular, the presence of RO33 increased the odds of developing gametocytes by 2 while the other allelic families K1, MAD20, FC27, and 3D7 had no significant impact on the occurrence of gametocytes in infected patients. CONCLUSION: This study provides insight into potential factors influencing gametocyte production in symptomatic patients. The findings contribute to enhance understanding of risk factors associated with gametocyte carriage in humans. Trial registration NCT01232530. |
Input your search keywords and press Enter.